Source code for detectron2.modeling.meta_arch.retinanet

# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
from typing import List, Tuple
import torch
from fvcore.nn import sigmoid_focal_loss_jit
from torch import Tensor, nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.layers import CycleBatchNormList, ShapeSpec, batched_nms, cat, get_norm
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage

from ..anchor_generator import build_anchor_generator
from ..backbone import Backbone, build_backbone
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss
from ..matcher import Matcher
from .build import META_ARCH_REGISTRY
from .dense_detector import DenseDetector, permute_to_N_HWA_K  # noqa

__all__ = ["RetinaNet"]


logger = logging.getLogger(__name__)


@META_ARCH_REGISTRY.register()
class RetinaNet(DenseDetector):
    """
    Implement RetinaNet in :paper:`RetinaNet`.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        head: nn.Module,
        head_in_features,
        anchor_generator,
        box2box_transform,
        anchor_matcher,
        num_classes,
        focal_loss_alpha=0.25,
        focal_loss_gamma=2.0,
        smooth_l1_beta=0.0,
        box_reg_loss_type="smooth_l1",
        test_score_thresh=0.05,
        test_topk_candidates=1000,
        test_nms_thresh=0.5,
        max_detections_per_image=100,
        pixel_mean,
        pixel_std,
        vis_period=0,
        input_format="BGR",
    ):
        """
        NOTE: this interface is experimental.

        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            head (nn.Module): a module that predicts logits and regression deltas
                for each level from a list of per-level features
            head_in_features (Tuple[str]): Names of the input feature maps to be used in head
            anchor_generator (nn.Module): a module that creates anchors from a
                list of features. Usually an instance of :class:`AnchorGenerator`
            box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to
                instance boxes
            anchor_matcher (Matcher): label the anchors by matching them with ground truth.
            num_classes (int): number of classes. Used to label background proposals.

            # Loss parameters:
            focal_loss_alpha (float): focal_loss_alpha
            focal_loss_gamma (float): focal_loss_gamma
            smooth_l1_beta (float): smooth_l1_beta
            box_reg_loss_type (str): Options are "smooth_l1", "giou", "diou", "ciou"

            # Inference parameters:
            test_score_thresh (float): Inference cls score threshold, only anchors with
                score > INFERENCE_TH are considered for inference (to improve speed)
            test_topk_candidates (int): Select topk candidates before NMS
            test_nms_thresh (float): Overlap threshold used for non-maximum suppression
                (suppress boxes with IoU >= this threshold)
            max_detections_per_image (int):
                Maximum number of detections to return per image during inference
                (100 is based on the limit established for the COCO dataset).

            pixel_mean, pixel_std: see :class:`DenseDetector`.
        """
        super().__init__(
            backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std
        )
        self.num_classes = num_classes

        # Anchors
        self.anchor_generator = anchor_generator
        self.box2box_transform = box2box_transform
        self.anchor_matcher = anchor_matcher

        # Loss parameters:
        self.focal_loss_alpha = focal_loss_alpha
        self.focal_loss_gamma = focal_loss_gamma
        self.smooth_l1_beta = smooth_l1_beta
        self.box_reg_loss_type = box_reg_loss_type
        # Inference parameters:
        self.test_score_thresh = test_score_thresh
        self.test_topk_candidates = test_topk_candidates
        self.test_nms_thresh = test_nms_thresh
        self.max_detections_per_image = max_detections_per_image
        # Vis parameters
        self.vis_period = vis_period
        self.input_format = input_format

[docs] @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) backbone_shape = backbone.output_shape() feature_shapes = [backbone_shape[f] for f in cfg.MODEL.RETINANET.IN_FEATURES] head = RetinaNetHead(cfg, feature_shapes) anchor_generator = build_anchor_generator(cfg, feature_shapes) return { "backbone": backbone, "head": head, "anchor_generator": anchor_generator, "box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RETINANET.BBOX_REG_WEIGHTS), "anchor_matcher": Matcher( cfg.MODEL.RETINANET.IOU_THRESHOLDS, cfg.MODEL.RETINANET.IOU_LABELS, allow_low_quality_matches=True, ), "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "num_classes": cfg.MODEL.RETINANET.NUM_CLASSES, "head_in_features": cfg.MODEL.RETINANET.IN_FEATURES, # Loss parameters: "focal_loss_alpha": cfg.MODEL.RETINANET.FOCAL_LOSS_ALPHA, "focal_loss_gamma": cfg.MODEL.RETINANET.FOCAL_LOSS_GAMMA, "smooth_l1_beta": cfg.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA, "box_reg_loss_type": cfg.MODEL.RETINANET.BBOX_REG_LOSS_TYPE, # Inference parameters: "test_score_thresh": cfg.MODEL.RETINANET.SCORE_THRESH_TEST, "test_topk_candidates": cfg.MODEL.RETINANET.TOPK_CANDIDATES_TEST, "test_nms_thresh": cfg.MODEL.RETINANET.NMS_THRESH_TEST, "max_detections_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, # Vis parameters "vis_period": cfg.VIS_PERIOD, "input_format": cfg.INPUT.FORMAT, }
def forward_training(self, images, features, predictions, gt_instances): # Transpose the Hi*Wi*A dimension to the middle: pred_logits, pred_anchor_deltas = self._transpose_dense_predictions( predictions, [self.num_classes, 4] ) anchors = self.anchor_generator(features) gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) return self.losses(anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes) def losses(self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes): """ Args: anchors (list[Boxes]): a list of #feature level Boxes gt_labels, gt_boxes: see output of :meth:`RetinaNet.label_anchors`. Their shapes are (N, R) and (N, R, 4), respectively, where R is the total number of anchors across levels, i.e. sum(Hi x Wi x Ai) pred_logits, pred_anchor_deltas: both are list[Tensor]. Each element in the list corresponds to one level and has shape (N, Hi * Wi * Ai, K or 4). Where K is the number of classes used in `pred_logits`. Returns: dict[str, Tensor]: mapping from a named loss to a scalar tensor storing the loss. Used during training only. The dict keys are: "loss_cls" and "loss_box_reg" """ num_images = len(gt_labels) gt_labels = torch.stack(gt_labels) # (N, R) valid_mask = gt_labels >= 0 pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) num_pos_anchors = pos_mask.sum().item() get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 100) # classification and regression loss gt_labels_target = F.one_hot(gt_labels[valid_mask], num_classes=self.num_classes + 1)[ :, :-1 ] # no loss for the last (background) class loss_cls = sigmoid_focal_loss_jit( cat(pred_logits, dim=1)[valid_mask], gt_labels_target.to(pred_logits[0].dtype), alpha=self.focal_loss_alpha, gamma=self.focal_loss_gamma, reduction="sum", ) loss_box_reg = _dense_box_regression_loss( anchors, self.box2box_transform, pred_anchor_deltas, gt_boxes, pos_mask, box_reg_loss_type=self.box_reg_loss_type, smooth_l1_beta=self.smooth_l1_beta, ) return { "loss_cls": loss_cls / normalizer, "loss_box_reg": loss_box_reg / normalizer, } @torch.no_grad() def label_anchors(self, anchors, gt_instances): """ Args: anchors (list[Boxes]): A list of #feature level Boxes. The Boxes contains anchors of this image on the specific feature level. gt_instances (list[Instances]): a list of N `Instances`s. The i-th `Instances` contains the ground-truth per-instance annotations for the i-th input image. Returns: list[Tensor]: List of #img tensors. i-th element is a vector of labels whose length is the total number of anchors across all feature maps (sum(Hi * Wi * A)). Label values are in {-1, 0, ..., K}, with -1 means ignore, and K means background. list[Tensor]: i-th element is a Rx4 tensor, where R is the total number of anchors across feature maps. The values are the matched gt boxes for each anchor. Values are undefined for those anchors not labeled as foreground. """ anchors = Boxes.cat(anchors) # Rx4 gt_labels = [] matched_gt_boxes = [] for gt_per_image in gt_instances: match_quality_matrix = pairwise_iou(gt_per_image.gt_boxes, anchors) matched_idxs, anchor_labels = self.anchor_matcher(match_quality_matrix) del match_quality_matrix if len(gt_per_image) > 0: matched_gt_boxes_i = gt_per_image.gt_boxes.tensor[matched_idxs] gt_labels_i = gt_per_image.gt_classes[matched_idxs] # Anchors with label 0 are treated as background. gt_labels_i[anchor_labels == 0] = self.num_classes # Anchors with label -1 are ignored. gt_labels_i[anchor_labels == -1] = -1 else: matched_gt_boxes_i = torch.zeros_like(anchors.tensor) gt_labels_i = torch.zeros_like(matched_idxs) + self.num_classes gt_labels.append(gt_labels_i) matched_gt_boxes.append(matched_gt_boxes_i) return gt_labels, matched_gt_boxes def forward_inference( self, images: ImageList, features: List[Tensor], predictions: List[List[Tensor]] ): pred_logits, pred_anchor_deltas = self._transpose_dense_predictions( predictions, [self.num_classes, 4] ) anchors = self.anchor_generator(features) results: List[Instances] = [] for img_idx, image_size in enumerate(images.image_sizes): scores_per_image = [x[img_idx].sigmoid_() for x in pred_logits] deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] results_per_image = self.inference_single_image( anchors, scores_per_image, deltas_per_image, image_size ) results.append(results_per_image) return results def inference_single_image( self, anchors: List[Boxes], box_cls: List[Tensor], box_delta: List[Tensor], image_size: Tuple[int, int], ): """ Single-image inference. Return bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). Arguments: anchors (list[Boxes]): list of #feature levels. Each entry contains a Boxes object, which contains all the anchors in that feature level. box_cls (list[Tensor]): list of #feature levels. Each entry contains tensor of size (H x W x A, K) box_delta (list[Tensor]): Same shape as 'box_cls' except that K becomes 4. image_size (tuple(H, W)): a tuple of the image height and width. Returns: Same as `inference`, but for only one image. """ pred = self._decode_multi_level_predictions( anchors, box_cls, box_delta, self.test_score_thresh, self.test_topk_candidates, image_size, ) keep = batched_nms( # per-class NMS pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh ) return pred[keep[: self.max_detections_per_image]] class RetinaNetHead(nn.Module): """ The head used in RetinaNet for object classification and box regression. It has two subnets for the two tasks, with a common structure but separate parameters. """ @configurable def __init__( self, *, input_shape: List[ShapeSpec], num_classes, num_anchors, conv_dims: List[int], norm="", prior_prob=0.01, ): """ NOTE: this interface is experimental. Args: input_shape (List[ShapeSpec]): input shape num_classes (int): number of classes. Used to label background proposals. num_anchors (int): number of generated anchors conv_dims (List[int]): dimensions for each convolution layer norm (str or callable): Normalization for conv layers except for the two output layers. See :func:`detectron2.layers.get_norm` for supported types. prior_prob (float): Prior weight for computing bias """ super().__init__() self._num_features = len(input_shape) if norm == "BN" or norm == "SyncBN": logger.info( f"Using domain-specific {norm} in RetinaNetHead with len={self._num_features}." ) bn_class = nn.BatchNorm2d if norm == "BN" else nn.SyncBatchNorm def norm(c): return CycleBatchNormList( length=self._num_features, bn_class=bn_class, num_features=c ) else: norm_name = str(type(get_norm(norm, 1))) if "BN" in norm_name: logger.warning( f"Shared BatchNorm (type={norm_name}) may not work well in RetinaNetHead." ) cls_subnet = [] bbox_subnet = [] for in_channels, out_channels in zip( [input_shape[0].channels] + list(conv_dims), conv_dims ): cls_subnet.append( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) ) if norm: cls_subnet.append(get_norm(norm, out_channels)) cls_subnet.append(nn.ReLU()) bbox_subnet.append( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) ) if norm: bbox_subnet.append(get_norm(norm, out_channels)) bbox_subnet.append(nn.ReLU()) self.cls_subnet = nn.Sequential(*cls_subnet) self.bbox_subnet = nn.Sequential(*bbox_subnet) self.cls_score = nn.Conv2d( conv_dims[-1], num_anchors * num_classes, kernel_size=3, stride=1, padding=1 ) self.bbox_pred = nn.Conv2d( conv_dims[-1], num_anchors * 4, kernel_size=3, stride=1, padding=1 ) # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred]: for layer in modules.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, mean=0, std=0.01) torch.nn.init.constant_(layer.bias, 0) # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) torch.nn.init.constant_(self.cls_score.bias, bias_value) @classmethod def from_config(cls, cfg, input_shape: List[ShapeSpec]): num_anchors = build_anchor_generator(cfg, input_shape).num_cell_anchors assert ( len(set(num_anchors)) == 1 ), "Using different number of anchors between levels is not currently supported!" num_anchors = num_anchors[0] return { "input_shape": input_shape, "num_classes": cfg.MODEL.RETINANET.NUM_CLASSES, "conv_dims": [input_shape[0].channels] * cfg.MODEL.RETINANET.NUM_CONVS, "prior_prob": cfg.MODEL.RETINANET.PRIOR_PROB, "norm": cfg.MODEL.RETINANET.NORM, "num_anchors": num_anchors, } def forward(self, features: List[Tensor]): """ Arguments: features (list[Tensor]): FPN feature map tensors in high to low resolution. Each tensor in the list correspond to different feature levels. Returns: logits (list[Tensor]): #lvl tensors, each has shape (N, AxK, Hi, Wi). The tensor predicts the classification probability at each spatial position for each of the A anchors and K object classes. bbox_reg (list[Tensor]): #lvl tensors, each has shape (N, Ax4, Hi, Wi). The tensor predicts 4-vector (dx,dy,dw,dh) box regression values for every anchor. These values are the relative offset between the anchor and the ground truth box. """ assert len(features) == self._num_features logits = [] bbox_reg = [] for feature in features: logits.append(self.cls_score(self.cls_subnet(feature))) bbox_reg.append(self.bbox_pred(self.bbox_subnet(feature))) return logits, bbox_reg