Source code for detectron2.engine.launch

# Copyright (c) Facebook, Inc. and its affiliates.
import logging
from datetime import timedelta
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

from detectron2.utils import comm

__all__ = ["DEFAULT_TIMEOUT", "launch"]

DEFAULT_TIMEOUT = timedelta(minutes=30)

def _find_free_port():
    import socket

    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    # Binding to port 0 will cause the OS to find an available port for us
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    # NOTE: there is still a chance the port could be taken by other processes.
    return port

[docs]def launch( main_func, num_gpus_per_machine, num_machines=1, machine_rank=0, dist_url=None, args=(), timeout=DEFAULT_TIMEOUT, ): """ Launch multi-gpu or distributed training. This function must be called on all machines involved in the training. It will spawn child processes (defined by ``num_gpus_per_machine``) on each machine. Args: main_func: a function that will be called by `main_func(*args)` num_gpus_per_machine (int): number of GPUs per machine num_machines (int): the total number of machines machine_rank (int): the rank of this machine dist_url (str): url to connect to for distributed jobs, including protocol e.g. "tcp://". Can be set to "auto" to automatically select a free port on localhost timeout (timedelta): timeout of the distributed workers args (tuple): arguments passed to main_func """ world_size = num_machines * num_gpus_per_machine if world_size > 1: # # TODO prctl in spawned processes if dist_url == "auto": assert num_machines == 1, "dist_url=auto not supported in multi-machine jobs." port = _find_free_port() dist_url = f"tcp://{port}" if num_machines > 1 and dist_url.startswith("file://"): logger = logging.getLogger(__name__) logger.warning( "file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://" ) mp.spawn( _distributed_worker, nprocs=num_gpus_per_machine, args=( main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout, ), daemon=False, ) else: main_func(*args)
def _distributed_worker( local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout=DEFAULT_TIMEOUT, ): assert torch.cuda.is_available(), "cuda is not available. Please check your installation." global_rank = machine_rank * num_gpus_per_machine + local_rank try: dist.init_process_group( backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank, timeout=timeout, ) except Exception as e: logger = logging.getLogger(__name__) logger.error("Process group URL: {}".format(dist_url)) raise e # Setup the local process group (which contains ranks within the same machine) assert comm._LOCAL_PROCESS_GROUP is None num_machines = world_size // num_gpus_per_machine for i in range(num_machines): ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine)) pg = dist.new_group(ranks_on_i) if i == machine_rank: comm._LOCAL_PROCESS_GROUP = pg assert num_gpus_per_machine <= torch.cuda.device_count() torch.cuda.set_device(local_rank) # synchronize is needed here to prevent a possible timeout after calling init_process_group # See: comm.synchronize() main_func(*args)